

Goal Reasoning to

Coordinate Robotic Teams for Disaster Relief

 Mark Roberts1, Swaroop Vattam1, Ronald Alford2,

Bryan Auslander3, Tom Apker4, Benjamin Johnson1,

and David W. Aha4

1NRC Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC
2ASEE Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC

3Knexus Research Corporation; Springfield, VA
4Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory, Code 5514; Washington, DC

1,2first.last.ctr@nrl.navy.mil | 3first.last@knexusresearch.com | 4first.last@nrl.navy.mil

Abstract

Goal reasoning is a process by which actors deliberate to

dynamically select the goals they pursue, often in response

to notable events. Building on previous work, we clarify and

define the Goal Reasoning Problem, which incorporates a

Goal Lifecycle with refinement strategies to transition goals

in the lifecycle. We show how the Goal Lifecycle can model

online planning, replanning, and plan repair as instantiations

of Goal Reasoning while further allowing an actor to select

its goals. The Goal Reasoning Problem can be solved

through goal refinement, where constraints introduced by

the refinement strategies shape the solutions for successive

iterations. We have developed a prototype implementation,

called the Situated Decision Process, which applies goal

refinement to coordinate a team of autonomous vehicles to

gather information soon after a natural disaster strikes. We

outline several disaster relief scenarios that progressively

require more sophisticated responses. Finally, we

demonstrate the prototype Situated Decision Process on the

simplest of our scenarios, showing the merits of applying

goal refinement to disaster relief.

1. Introduction

Robotic systems often commit to actions to achieve some

goal. For example, a robot may commit to actions that

attain some goal (e.g., to be at(location)) or to maintain

some desirable condition (e.g., keep its battery charged).

Robots also frequently act in partially-observable, dynamic

environments with non-deterministic action outcomes.

Consequently, robots may encounter notable events that

impact their current commitments, examples of which

include an exogenous event in the environment (e.g., wind

disrupts vehicle navigation), a sensor reading identifies

something of interest (e.g., a radio sensor reports the cell

phone signal of an important person), or an executed action

leads to an unanticipated outcome (e.g., a vehicle switches

itself to a more urgent task, causing delay on the first task).

 Robots must deliberate on their responses to notable

events that impact their goals. Appropriate responses

might include continuing despite the event, adjusting

expectations, repairing the current plan, replanning,

selecting a different goal (i.e., regoaling), deferring the

original goal in favor of another goal, or dropping the goal

altogether. Responses could be designed a priori or learned

by the robot, but ultimately, the robot deliberates about its

commitment(s) to its goal(s). Goal Reasoning (GR) is the

capacity of an actor to deliberate about its goals, which

involves formulating, prioritizing, and adjusting its goals

during execution. GR actors are distinguished by their

available responses, how they obtained them, and how they

apply them. The degree to which an actor performs GR

determines its autonomy and ability to respond to change.

 We have implemented a software library for Goal

Reasoning that we apply to coordinating robotic vehicle

teams for Foreign Disaster Relief (FDR) operations. In the

rest of the paper, we introduce FDR (§2) and our prototype

system called the Situated Decision Process (SDP) (§3).

We formally extend the GR Problem to online planning,

demonstrating how it instantiates common systems (§4).

We describe how to solve Goal Reasoning as iterative

Goal Refinement (§5). We outline a set of FDR scenarios

(§6) and detail how we applied our Goal Refinement

library for the simplest of the FDR scenarios (§7). After a

proof-of-concept demonstration (§8), we conclude and

highlight ongoing and future work (§9). Related work is

mentioned throughout the sections. The contributions of

this paper over previous work (Roberts et al. 2014, 2015)

include formally incorporating Goal Refinement into an

online planning and execution framework (Nau 2007) and

introducing an algorithm, fully outlining the set FDR

scenarios, and providing richer detail of the

implementation of Goal Refinement for FDR.

2. Motivating Application: Disaster Relief

We study how to coordinate a team of robotic vehicles for

Foreign Disaster Relief (FDR) operations. Between the

time of a tragic disaster (e.g., Typhoon Yolanda) and the

arrival of support operations, emergency response

personnel need information concerning the whereabouts of

survivors, the condition of infrastructure, and suggested

ingress and evacuation routes. Current practice for

gathering this information relies heavily on humans (e.g.,

first responders, pilots, drone operators). A team of

autonomous vehicles with sensors can facilitate such

information gathering tasks, freeing humans to perform

more critical tasks in FDR operations (Navy 1996). It is

not tenable to tele-operate every vehicle, so we must

design a system that allows humans to be “on” the control

loop of vehicles without issuing every vehicle command.

FDR operations present unique challenges for domain

modeling because each disaster is distinct. Any system that

supports FDR operations must allow personnel to tailor

vehicles’ tasks to the current situation. The system must

also respond to notable events during execution.

 An example information gathering task is shown in

Figure 1 (top), which depicts a survey task for a team of

fixed-wing aerial vehicles. Three vehicles (V1, V2, and

V3) begin at the center base and must follow the nominal

trajectories (green dashed lines) as closely as possible to

maximize coverage of the areas (gray circles). The outer

gray box outlines the vehicles’ allowed flight envelope.

 Figure 1 (bottom) demonstrates notable events for a

single vehicle with a next goal of at(y). The vehicle should

follow the expected path (dashed line from x to y) within

the preferred bounds (the curved thin green lines); staying

within these bounds gives the best solution. The gray outer

box is the proposed flight envelope outside of which the

vehicle may negatively interact with other vehicles. The

actual flight path is given by the solid arc that starts at x

and ends at y. The deviating path is due to the difference

between the expected wind (dashed vectors) and actual

wind (solid vectors). The dots correspond to notable events

that could impact the vehicle’s goal commitment to be

at(y). The first two points indicate where the vehicle

violates the preferred trajectory while the last two points

indicate the eminent and actual violation of the flight

envelope.

 Below each plot is a representation of the vehicle

timeline(s), as described by Smith et al. (2000). The time

window of the plan indicates that the plan should start

executing no earlier than the earliest start time (i.e., the

leftmost vertical bar) and finish by the latest finish time

(the rightmost vertical bar). The large block in the middle

indicates the expected duration.

3. The Situated Decision Process (SDP)

We have implemented a prototype of a system, called the

Situated Decision Process (SDP), which is designed to

allow flexible assignment and control of a team of robots

for FDR. Figure 2 displays an abstraction of the SDP

components we discuss in this paper. The SDP is

partitioned into three abstract layers, each composed of

components that perform specific tasks. We will briefly

describe the layers and some components. A more

complete exposition of the SDP and its components is

provided by Roberts et al. (2015).

 The UI Layer (colored white) manages interaction with

the Operator. In this layer, the User Interface (UI)

component collects operational goals and constraints from

a human Operator (e.g., survey this region, look for a Very

important Person (VIP) in this other region, and do not fly

outside these bounds). The UI Layer conveys Operator

feedback to the other components as needed and provides

info to an Operator that the Operator may then decide to

act on.

 The Distributed Layer (colored black) manages the

vehicles or vehicle simulation. Reactive robotic controllers

often employ FSAs to determine a robot’s next action.

Although they are fast to execute, hand-writing FSAs is

Figure 1: Examples where goal reasoning

may apply in a team survey task (top) and a track

following task from point x to point y (bottom) with

possible notable events highlighted by dots.

error prone, tedious, and brittle. Yet, creating a single

robotic controller for the many FDR missions and tasks is

untenable because no controller could incorporate all the

necessary steps. Recent advances apply a restricted variant

of Linear Temporal Logic (LTL) called General

Reactivity(1) to automatically synthesize FSAs in time

cubic in the size of the final FSA (Bloem et al. 2012). This

layer leverages LTLMop (Kress-Gazit et al. 2009) for LTL

synthesis and physicomimetics (Apker et al. 2014) to

implement vehicle control.

 The Coordination Layer (colored gray) focuses on the

mission and task abstractions for the vehicle teams. Even

though LTL improves the consistency and speed of FSA

generation, synthesis still becomes impractical for teams in

dynamic environments. Hierarchical mission planning is

naturally suited to limit the FSA size for teams of vehicles

(e.g., by pre-allocating missions to vehicles or by assigning

vehicles to teams). Assigning specific tasks to vehicles

leads to compact, manageable LTL specifications, which

allows us to construct vehicle FSAs with reasonable

computational effort. We employ hierarchical

decomposition (task) planning because it matches well

with how humans view FDR operations (Navy 1996). In

particular, we apply goal refinement to coordinate those

vehicle missions in support of larger FDR operations.

 The Coordination and Distributed Layers of the SDP are

linked via a set of Coordination Variables, which integrate

team mission goals with the vehicle controllers by

providing abstraction predicates for vehicle commands,

vehicle state (e.g., current behavior and health), and

abstract vehicle sensor data.

 The responses of the SDP must consider relevance to the

operational context. Much is unknown or dramatically

different from before to the disaster. The SDP must

respond appropriately to the Operator dynamically

(re)allocating resources or (re)prioritizing goals as new

information becomes available. The SDP should respond

by confirming the Operator’s intent and producing

alternatives that best allocate resources to goals.

4. Goal Reasoning

Deliberating about objectives – how to prioritize and attain

(or maintain) them – is a ubiquitous activity of all

intentional entities (i.e., actors). For the purposes of this

section, we make the simplifying assumption that an

objective is a goal, which is a set of states the actor desires

to attain or maintain. Thangarajah et al. (2011) and

Harland et al. (2014) show that all goals are either

attainment goals or maintenance goals, but for further

simplicity we will focus almost exclusively on attainment

goals in this paper. Regardless of the source, achieving

goals requires deliberation on the part of the actor (e.g., a

plan must be created to achieve a goal). Although our

motivating application is robotic team coordination, we

generally refer to any system that interleaves deliberation

with acting as an actor, following the terminology of

Ghallab et al. (2014) and Ingrand & Ghallab (2014). This

section extends and clarifies early work on formalizing GR

by Roberts et al. (2014).

 To clarify the relationship of GR to planning, consider

our adaptation of Nau’s (2007) model of online planning

and execution in Figure 3, which shows how a Goal

Reasoner complements online planning (in black) with

Goal Reasoning (in gray). The world is modeled as a State

Transition System Σ = (𝑆, 𝐴, 𝐸, 𝛿) where: 𝑆 =
{𝑠0, 𝑠1, 𝑠2, … } is a set of (discrete) states that represent facts

in the world; 𝐴 = { 𝑎1, 𝑎2, … } are the actions controlled by

the actor; 𝐸 = {𝑒1, 𝑒2, … } is a set of events not controlled

by the actor; and, 𝛿 ∶ 𝑆 × (𝐴 ∪ 𝐸) → 2𝑆 is a state-

transition function. 𝑠𝑖𝑛𝑖𝑡 ∈ 𝑆 denotes the initial state of the

actor. Assuming attainment goals, the actor seeks a set of

transitions from 𝑠𝑖𝑛𝑖𝑡 to either a single goal state 𝑠𝑔 ∈ 𝑆 or

Figure 3: Incorporating Nau’s (2007) Online
Planning Model into a Goal Reasoning Loop.

Figure 2: An abstract view of the Situated Decision

Process (SDP). Nodes are colored by layer: UI (white),

Coordination (Gray), and Vehicle (black).

a set of goal states 𝑆𝑔 ⊂ 𝑆. Under classical assumptions,

the planning problem can be stated: Given Σ = (S, A, δ),

𝑠𝑖𝑛𝑖𝑡 , and a set of goal states 𝑆𝑔 find a sequence of actions

(𝑎1, 𝑎2, … , 𝑎𝑘) that lead to a sequence of states

(𝑠𝑖𝑛𝑖𝑡 , 𝑠1, 𝑠2, … , 𝑠𝑘) such that 𝑠1 ∈ 𝛿(𝑠𝑖𝑛𝑖𝑡 , 𝑎1), 𝑠2 ∈
𝛿(𝑠1, 𝑎2), … , 𝑠𝑘 ∈ 𝛿(𝑠𝑘−1, 𝑎𝑘), and 𝑆𝑔 ∈ 𝑠𝑘. However, it is

rare that plans exist without some actor to execute them

(cf. Pollack & Horty 1999). In online planning, execution

status is provided to the planner as part of its deliberation.

This allows the planner to adjust to dynamic events or new

state in the environment. The online planning model often

assumes static, external goals.

 Before we define Goal Reasoning, we must clarify the

notion of “state” in the GR actor, which includes both its

external and internal state and which requires expanding

the state representation beyond S. To avoid confusion with

the use of the word state as it is typically applied in

planning systems, we will use 𝐿 to represent the language

of GR. We say that the language of a GR actor is 𝐿 =
𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ∪ 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 , where

 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 will often be a model of Σ but may be (or

may become) a modified or incomplete version of Σ

during execution or deliberation. An example of an

external state for Figure 1 is at(y).

 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 represents the predicates and state required

for the refinement strategies (e.g., the predicates

𝑎𝑡𝑡𝑎𝑖𝑛(𝑔) or 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛(𝑔), the state of all goals).

An example of an internal state for Figure 1 is

attain(at(y)).

 We similarly extend and partition the set of goals into

𝐿𝑔 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑔 ∪ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑔 . In 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 the actor

selects actions to achieve 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑔. In 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 the actor

selects actions to achieve 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑔. Internal goals may be

conditioned on external goals or vice versa. For

convenience, we write goals as 𝑔 and it should be clear

from context whether we mean 𝑔 ∈ 2𝑆 or 𝑔 ∈ 2𝐿. If more

context is needed we will use 𝑆𝑔 for goals that depend on Σ

and 𝐿𝑔 for goals that depend on Ζ (defined next).

 We model the GR actor as a State Transition

System Ζ = (𝑀, 𝑅, 𝛿𝐺𝑅), where: 𝑀 is the goal memory that

we detail in §4.1; 𝑅 is the set of refinement strategies

introduced in §4.2; and 𝛿𝐺𝑅 ∶ 𝑀 × 𝑅 → 𝑀′ is a transition

function we describe in §4.3.

4.1 The Goal Memory (𝑀)

The Goal Memory 𝑀 stores 𝑚 goals. Let 𝑔𝑖 be the actor’s

𝑖𝑡ℎ goal for 0 ≤ 𝑖 ≤ 𝑚. Then 𝑁𝑔𝑖 =
〈𝑔𝑖 , 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 , 𝐶, 𝑜, 𝑋, 𝑥, 𝑞〉 is a goal node where:

𝑔𝑖 is the goal that is to be achieved (or maintained);

𝑝𝑎𝑟𝑒𝑛𝑡 is the goal whose subgoals include 𝑔𝑖;

𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 is a list containing any subgoals for 𝑔𝑖;

𝐶 is the set of constraints on 𝑔𝑖. Constraints could be

temporal (finish by a certain time), ordering (do x

before y), maintenance (remain inside this area),

resource (use a specific vehicle), or computational

(only use so much CPU or memory).

𝑜 is current lifecycle mode (see Figure 4 and §4.2).

𝑋 is a set of expansions that will achieve the goal. The

kind of expansions for a goal depend on its type. For

goals from Σ, expansions might be a plan set Π. But

other goals might expand into a goal network, a task

network, a set parameters for flight control, etc. The

expand strategy, described in §4.2, creates 𝑋.

𝑥 ∈ 𝑋 is the currently selected expansion. This

selection is performed with the commit strategy.

𝑞 is a vector of one or more quality metrics. For

example, these could include the priority of a goal,

the inertia of a goal indicating a bias against

changing its current mode because of prior

commitments, the net value (e.g., cost, value, risk,

reward) associated with achieving 𝑔𝑖, using the

currently selected expansion 𝑥 ∈ 𝑋, the parallel

execution time (i.e., the schedule makespan) or the

number of plan steps.

The constraints will be discussed in §5, where we detail

how a GR actor refines goals. A partition 𝐶 = 𝐶𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∪
𝐶𝑎𝑑𝑑𝑒𝑑 separates constraints into those provided to the GR

process independent of whatever invoked it (e.g., human

operator, meta-reasoning process, coach) and those added

during refinement. Top-level constraints can be pre-

encoded or based on drives (e.g., (Coddington et al. 2005;

Young & Hawes 2012)). Hard constraints in 𝐶 must be

satisfied at all times, while soft constraints should be

satisfied if possible.

 Our use of goal memory is distinct from its typical use in

cognitive science, where goal memory is typically

presented as a mental construct with representations and

processes that are used to store and manage goal-related

requirements of the task that a cognitive agent happened to

be engaged in (e.g., Altmann & Trafton 1999; Anderson &

Douglass 2001; Choi 2011). While issues such as

interference level, strengthening, and priming constraints

are key requirements to mimic human memory (Altmann

& Trafton 2002), we ignore any such considerations

because we are not concerned with the cognitive

plausibility of our goal memory model.

4.2 Refinement strategies (𝑅)

The actor applies a set of refinement strategies 𝑅 to

transition goal nodes in 𝑀. The Goal Lifecyle (Figure 4)

captures the possible decision points of goals in the SDP.

Decisions consist of applying a strategy (arcs in Figure 4)

to transition a goal node 𝑁𝑔 among modes (rounded

boxes). For convenience, we sometimes refer to the goal

node 𝑁𝑔 as simply the goal 𝑔, though it should be clear

that any strategies are functions that transition some 𝑁𝑔. In

§6 we will detail strategies that we implemented for the

FDR application that motivated this work.

 Goal nodes in an active mode are those that have been

formulated but not yet dropped. The formulate strategy

determines when a new goal node is created. Vattam et al.

(2013) describe goal formulation strategies. The drop

strategy causes a goal node to be “forgotten” and can occur

from any active mode; this strategy may store the node’s

history for future deliberation. To select 𝑁𝑔 indicates

intent and requires a formulated goal node. The expand

strategy decomposes 𝑁𝑔 into a goal network (e.g., a tree of

subgoal nodes) or creates a (possibly empty) set of

expansions 𝑋. Expansion is akin to the “planning” step, but

is renamed here to generalize it from specific planning

approaches. The commit strategy chooses an expansion

𝑥 ∈ 𝑋 for execution; a static strategy or domain-specific

quality metrics may rank possible expansions for selection.

The dispatch strategy slates 𝑥 for execution; it may further

refine 𝑥 prior to execution (e.g., it may allocate resources

or interleave 𝑥’s execution with other expansions).

Goal nodes in executing modes (Figure 4, dashed lines)

can be subject to transitions resulting from expected or

unexpected state changes in Σ or Ζ. The monitor strategy

checks progress for 𝑁𝑔 during execution. Execution

updates, including notification that the executive has

completed the tasks for the goal, arrive through the

evaluate strategy. In a nominal execution, the information

can be either resolved through a continue strategy after

which the finish strategy marks the goal node as finished.

 When notable events occur during execution, the

evaluate strategy determines how they impact goal node

execution and the resolve strategies define the possible

responses. If the evaluation does not impact 𝑁𝑔, the actor

can simply continue the execution. However, if the event

impacts the current execution other strategies may apply.

One obvious choice is to modify the world model (i.e., Σ or

Ζ) using adjust, but adjusting its model does not resolve

the mode of 𝑁𝑔 and further refinements are required. The

repair strategy repairs the expansion 𝑥 so that it meets the

new context; this is frequently called plan repair. If no

repair is possible (or desired) then the re-expand strategy

can reconsider a new plan in the revised situation for the

same goal; this is frequently called replanning. The defer

strategy postpones the goal, keeping the goal node selected

but removing it from execution. Finally, formulate creates

a revised goal 𝑔′; the actor then may drop the original goal

𝑔 to pursue 𝑔′ or it could consider both goals in parallel.

 We partition 𝑅 = 𝑅𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∪ 𝑅𝑎𝑑𝑑𝑒𝑑 ∪ 𝑅𝑙𝑒𝑎𝑟𝑛𝑒𝑑 to

distinguish between representations that the actor was

provided prior to the start of its lifetime (e.g., through

design decisions), representations that were added to its

model as a result of execution in an environment (e.g., a

new object is sensed), and those it learned for itself (e.g.,

the actor adjusts its expectations for an action after

experience).

4.2 The Transition Function (𝛿𝐺𝑅)

Not every strategy will apply to every goal or every

situation. The transition function 𝛿𝐺𝑅 specifies the allowed

transitions between modes. In a domain-independent

fashion, 𝛿𝐺𝑅 is defined by the arcs in the lifecycle.

However, a system or domain may modify (through

composition, ablation, or additional constraints) the

transitions for 𝑀. For example, in FDR operations, human

approval is required before the SDP can commit to vehicle

flight paths. In such a case, additional constraints on the

commit strategy would ensure that Operator consent is

obtained before a vehicle actually flies a trajectory.

4.3 Instantiations of the Goal Reasoning Problem

The Goal Reasoning Problem distinguishes systems by

their design choices and, thus, facilitates their comparison.

Figure 5 shows how different instantiations of the Goal

Lifecycle can represent iterative plan repair (e.g., Chien et

al. 2000), replanning (e.g., Yoon et al. 2007), and Goal-

Driven Autonomy (e.g., Klenk et al. 2013).

Figure 4: The Goal Lifecycle (Roberts et al. 2014). Strategies (arcs) denote possible decision points

of an actor, while modes (rounded boxes) denote the status of a goal (set) in the goal memory.

4.4 The Goal Reasoning Problem

We can now define the Goal Reasoning Problem. Let 𝐿𝑖𝑛𝑖𝑡

be the initial state of the actor, which includes 𝑠𝑖𝑛𝑖𝑡 . Then,

the Goal Reasoning Problem can be stated:

Given 𝛧 and 𝐿𝑖𝑛𝑖𝑡 , a GR actor examines its goal

memory 𝑀𝑡 at time 𝑡 and chooses a strategy that

maximizes its long-term rewards using

∑ 𝛾𝑡𝑟𝑒𝑤𝑎𝑟𝑑𝑡
∞
𝑡 , where 𝛾𝑡 is a discount factor and

𝑟𝑒𝑤𝑎𝑟𝑑𝑡: 𝑀𝑡 × 𝑅𝑡 → ℝ𝑡 yields the actor’s reward of

applying one or more refinement strategies at time 𝑡.

Roberts et al. (2014) showed how this problem could be

modelled as an MDP or Reinforcement Learning problem.

However, we apply neither of these in our implementation.

4.5 Related Work

The Goal Lifecycle bears close resemblance to that of

Harland et al. (2014) and earlier work (Thangarajah et al.,

2010). They present a Goal Lifecycle for BDI agents,

provide operational semantics for their lifecycle, and

demonstrate the lifecycle on a Mars rover scenario. It

remains future work to more fully characterize the overlap

of their lifecycle with the Goal Lifecycle we define. Work

by Winikoff et al. (2010) has also linked Linear Temporal

Logic to the expression of goals. Our work differs in that it

focuses on teams of robots rather than single agents.

Our approach of coordinating behaviors with constraint-

based planning is inspired by much of the work mentioned

by Rajan, Py, and Barriero (2013) and Myers (1999).. Our

Team Executive leverages the Executive Assistant of Berry

et al. (2003).

5. Goal Reasoning as Goal Refinement

Solutions to the Goal Reasoning Problem can be solved

through refinement search, a process we call goal

refinement. Goal refinement builds on planning as

refinement search (Kambhampati 1994, 1997;

Kambhampati et al. 1995). Refinement planning employs a

split and prune model of search, where plans are drawn

from a candidate space 𝐾. Let a search node 𝑁 be a

constraint set that implicitly represents a candidate set

drawn from 𝐾. Refinement operators transform a node 𝑁𝑖

at layer 𝑖 into 𝑘 children 〈𝑁𝑗1, 𝑁𝑗2,, … , 𝑁𝑗𝑘〉 at layer 𝑗 = 𝑖 +

1 by adding constraints that further restrict the candidate

sets in the next layer. If the constraints are inconsistent

then the candidate set is empty. Let 𝑁∅ represent an initial

node whose candidate set equals 𝐾 and results from only

the initial constraint set provided in the problem

description (from the perspective of the search process, the

refined constraints are empty, thus the subscript ∅). The

RefinePlan algorithm recursively applies refinements to

add constraints until a solution is found. A desirable

property of refinements is that subsequent recursive calls

result in smaller candidate subsets. Thus the constraints aid

search by pruning the solution space, identifying

inconsistent nodes, and providing backtracking points.

Instantiations of RefinePlan correspond to variants of

classical planning search algorithms. Plan refinement

equates different kinds of planning algorithms in plan-

space and state-space planning. Extensions incorporated

other forms of planning and clarify issues in the Modal

Truth Criterion (Kambhampati and Nau 1994). More

recent formalisms such as angelic hierarchical plans

(Marthi et al. 2008) and hierarchical goal networks

(Shivashankar et al. 2013) can also be viewed as

leveraging plan refinement. The focus on constraints in

plan refinement allows a natural extension to the many

integrated planning and scheduling systems that use

constraints for temporal and resource reasoning.

 Figure 6 shows a Goal Refinement algorithm. Goal

Refinement begins with 𝑁∅
𝑔

, which consists of the

candidate space of all possible executions achieving 𝑔. It

then applies refinement strategies from the Goal Lifecycle

(see Figure 4) to 𝑁𝑖
𝑔

 at layer 𝑖 into k children

〈𝑁𝑗1
𝑔

, 𝑁𝑗2,
𝑔

, … , 𝑁𝑗𝑚
𝑔 〉 at layer 𝑗 = 𝑖 + 1 by modifying the goal

node, which further restricts the candidate sets in the next

layer. Figure 7 shows how the modes of a goal indicate

successively smaller candidate sets towards eventual

execution; transitions between these modes consist of

adding, removing, or modifying constraints and states in

𝑁𝑔. Each transition increases the level of commitment the

actor has made to 𝑔 and increases the degree of refinement

for 𝑁𝑔. If each refinement also reduces the candidate set of

solutions, then search can be more efficient.

Figure 5: Instantiations of the Goal Lifecycle that

incorporate plan repair (top), replanning (middle),

 and Goal-Driven Autonomy (bottom).

6. FDR Scenarios and GR Use Cases

Military leaders in a FDR focus on five priorities (Navy,

1996). Relief operations prevent or limit further loss of life

or property damage; these operations focus on identifying

or deploying first responders and taking actions to provide

critical sustenance and first aid. Logistics operations

establish and maintain key areas for equipment as well as

plan for the distribution of materiel and personnel to the

area; these focus on determining large, medium and small

landing zones for air, sea, and ground vehicles as well as

determining the capacity of existing infrastructure. Security

operations locate key personnel and maintain safety for

military and civilian assets; these operations involve

locating the embassy and local government personnel,

determining threats to operations, and providing

transportation or evacuation assistance. Communications

or information sharing operations establish and maintain

an unclassified web-based network to allow foreign

planners to share information with relief organizations;

these involve assessing the existing communications

network and possibly supplementing it as needed.

Consequence management operations eliminate the

negative impact of intentional or inadvertent release of

hazardous materials as well as potential epidemics.

 Two common threads in all five priorities are updated

map data and reliable communications. A team of

autonomous vehicles can update the map data concerning

the roads and communications network, confirm the state

of any potential hazardous material or threats to operations,

and provide intelligence concerning the locations of

survivors. We consulted with Navy reservists who perform

FDR operations to develop three scenarios that showcase

how the SDP can support FDR operations. Each scenario

focuses on introducing notable events or error conditions to

force the SDP to respond in a coordinated way by

proposing operationally relevant solutions.

 Though we only discuss the scenarios in this paper, we

also developed use cases based on these scenarios to

independently exercise every strategy of the Goal

Lifecycle. Each use case corresponds to the detection of

and response to specific notable events by the Mission

Manager. The use cases focus on using the resolve

strategies of Goal Lifecycle (cf. Figure 4, dashed lines).

 The vehicles in these scenarios carry three kinds of

sensors. Electro Optical (EO) sensors that collect images.

Radio Frequency (RF) sensors that can locate radio

signals or perform radio communications. Another type of

sensor detects chemical, biological, radiation, nuclear,

and explosives (CBNRE). We can simulate CBNRE

dangers using an RF signal at a particular frequency.

Alternatively, we can simulate the existence of a hazard in

a mixed real-virtual environment where the vehicles are

flying in the real world but sensor reports are given by a

software system.

 The scenarios use three vehicle types (see Figure 8).

Fixed wing Unmanned Aerial Vehicles (UAVs) are small

air vehicles such as the Bat4, Insitu ScanEagle, Unicorn or

Blackjack. A UAV’s operational time ranges from 2 to 20

hours, it can travel at low air speeds at altitudes up to 5000

feet, and it can carry sensor payloads up to 100kg. Micro

Aerial Vehicles (MAVs) are small quadrotor or heptarotor

UAVs such as the Acending Technologies Pelican. MAVs

have operational times ranging from 3-15 minutes, travel

close to the ground with limited range, and can carry very

small EO or RF sensors. The extended scenario adds

additional air and ground vehicles. Unmanned Ground

Vehicles (UGVs) are small ground vehicles weighing

about 60 pounds with a running time of 2-4 hours between

charges. We use one to three iRobot Packbots PB1, PB2,

and PB3. These vehicles can support significant payloads

and computational power (depending on their battery life).

Because MAVs are so range-limited, we also include in

our scenarios Kangaroos, which are a combined vehicle

type consisting of UGVs carrying a MAV.

 These vehicles provide three atomic mission types: (1)

Surveying a region with an EO sensor; (2) locate a Very

Important Person (VIP) using an RF sensor; and (3) serve

as a communications relay for a VIP.

Figure 6: A Goal Refinement algorithm

Figure 7: Modes define increasingly smaller

candidate subsets for Goal Refinement

Figure 8: UAV (left), UGV (middle), and MAV

(right). See prose for descriptions.

6.1 Integration Scenario

This simple baseline scenario tests and demonstrates the

major system components and their interactions; it

involves a team of vehicles surveying the roads and finding

a VIP in one of two Operator-selected regions. Three

fixed-wing UAV vehicles fly over two pre-selected regions

of interest to collect low resolution raster data in support of

infrastructure assessment. When a UAV locates a

survivor’s cell phone signal, it circles the signal location

acting as a relay until receiving further instruction.

 Figure 9 demonstrates a hypothetical start of the

integration scenario, when a known map is provided to the

Coordination Layer and discretized to allow for sensor data

collection. The Operator can specify that particular regions

as likely to contain specific people. For example, areas

around an embassy and airport are likely to have VIPs to

the FDR operations. In this example, one VIP is located at

a building on an embassy compound. The VIP’s cell phone

can be represented by any suitable radio signal emitter that

the RF sensors on the vehicles will sense.

 The Operator first identifies the specific vehicle/sensor

platforms, which in this scenario includes three UAV

vehicles, each with an EO and an RF sensor. The Operator

then selects two regions and selects two missions (i.e.,

goals) for these regions: (1) VIPFound and (2)

RoadsAssessed. Note that the Coordination Layer will

eventually propose potential regions, as identified below in

the extended scenario The Coordination Layer responds by

highlighting possible trajectories over these regions,

soliciting operator approval, and executing the data

collection for those regions. UAV1, UAV2, and UAV3

complete a survey of these two regions of interest.

 UAV1 locates the VIP cell signal and responds by

switching to a VIPCommsRelayed goal. The vehicle’s

response is to begin hovering over the VIP signal. The UI

response is to add a new avatar for the VIP (e.g., a red star)

in the appropriate spot on the screen. The response in the

Coordination Layer will be to formulate a new goal

VIPCommsRelayed.

The automated formulation of this goal is central to

demonstrating how GR can aid the guidance of

autonomous systems. One can imagine extending this to

more elaborate scenarios where the system proposes new

missions for the team as missions unfold.

6.2 Recommendation Scenario

This scenario extends the Integration Scenario so that the

SDP additionally suggests the most likely regions for

finding the VIP. In this scenario, the Operator can simply

accept these regions rather than have to manually highlight

them. This scenario reduces Operator entry load at the start

of an FDR operation; the SDP instead refines goals to

obtain the map from the world model, observe probable

locations of the VIP (e.g., the embassy and the airport), and

suggest regions to begin exploring. To do this, the SDP

analyzes known map data to create a region around an

airport, a region around a building where the VIP was last

spotted, and a region following the best road network

between the airport and building.

6.3 Extended Scenario

Our most ambitious scenario involves all three vehicle

types and exercises every strategy in the Goal Lifecycle.

Figure 10 displays the main elements of the scenario,

which takes place in a region the size of a few city blocks.

Streets are named along the bottom and right side of the

plot; some streets have a specific region (dotted boxes near

the top and middle of the plot) where vehicles will need to

survey during the scenario.

This scenario extends the Integration scenario after the

point where UAV1 has identified that the VIP signal is

emitted near the Embassy Compound. UAV2 and UAV3

return to base, and await further instruction. For the rest of

the scenario, UAV1 circles above the embassy, tracking it

and acting as a communications relay. At this point, the

SDP is not aware of the Flood or Chlorine Spill because

trees are blocking the flood from the UAV’s camera and

Figure 9: Example airport and VIP regions. The base is

located between the regions. Also shown are the

trajectories (blue lines) for two vehicles (yellow dots). Figure 10: The Extended Scenario

the UAV is flying too high to detect the spill. The UI has

already notified the operator that a VIP was found and we

assume the Operator “calls” the cell phone, decides to

extract this person, and adds a new goal for the

autonomous team to confirm safe ingress/egress routes

followed by locating the VIP within the Embassy. At the

start of the scenario, the best route that can be planned to

extract the VIP from the Main Base is east along Palamino

St., and then north on Aster Rd., which we denote as Route

A. The Coordination Layer suggests allocating two

Kangaroos to explore Route A, confirms this route via the

UI Layer with the human, and dispatches the approved

trajectories.

During navigation of Route A, the Kangaroos detect a

chlorine spill of unknown severity. The Mission Manager

responds by suggesting a new allocation of three additional

MAVs with CBNRE sensors to assess the extent of the

spill. Alternatively, it could assign one Kangaroo to stop

exploring Route A and help with this task. By now the

Kangaroos should be at or near the VIP. However, because

of the chlorine spill, a new route must be determined. The

Mission Manager asks the Kangaroos to survey the Frisco

Region (dashed lines on Frisco St.) and the flood is

discovered, so Frisco St. is deemed impassable until further

inquiry is done (this follow up goal should appear in the

goal list of the Coordination Layer). The Mission Manager

then commands the Kangaroos to survey the GrandRegion

and determine Grand St. is passable. A safe route between

the base and VIP is now established. The Kangaroos enter

the embassy and locate the VIP. Because the FDR mission

context includes locating survivors in buildings, the

Mission Manager suggests the Kangaroos perform

additional searching within the embassy to the Operator,

who consents to this goal.

7. Goal Refinement for FDR

In this section, we detail our implementation of Goal

Refinement in the SDP. We encoded the domain

knowledge as a hierarchical goal network (Shivashankar et

al. 2013; Geier & Bercher 2012). The SDP’s goal network

is currently hand-coded, but we are currently writing this

model in the ANML language (Dvorák et al. 2014) and

plan to integrate a full planning system in the SDP. The

SDP will eventually guide vehicles in cooperation with its

Operator, but in this paper we assume static mission goals

and a fixed number of vehicles. We implemented the Goal

Refinement model as a Java library and used this library to

implement a goal network for the integration scenario. In

this section, we provide details regarding how we

implemented the GR actor for the Mission Manager of the

SDP. We will frequently refer the goal nodes as “goals” to

simplify the explanation, though it should be clear from

context that these are actually the goal nodes of §4.1.

 A GoalMemory class stores goal nodes in a priority

queue sorted by the node priority. The priority of a node in

the SDP depends on mode: formulated (10000), selected

(20000), expanded (30000), committed (40000),

dispatched (50000), evaluated (70000), and finished

(90000). Higher priority ensures that goals further along in

the lifecycle get more attention.

 The Mission Manager is the GR actor in the SDP. It

works with two GoalMemory objects. An

InternalGoalMemory is used to initialize the system (e.g.,

load the domain) and store incoming information waiting

to be processed. It stores any goals drawn from 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

(see §4). A DomainGoalMemory stores the goal nodes

associated with 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 . Figure 11 displays the goal

network stored in the DomainGoalMemory for the scenario

in Figure 9.

 Goals (i.e., goal nodes) in the SDP exist within a goal

ontology. Strategies in the SDP are written as a Strategy

Pattern (Gamma et al. 1994) called by the Mission

Manager. Every goal in the SDP implements the

StrategyInterface; goals override methods in this interface

to implement their specific strategies. Unless specifically

stated as overridden, goals inherit the strategies of the

goals they extend. This allows default strategies to be

implemented high in the goal ontology, encouraging

strategy reuse.

StrategyInterface contains the following strategies:

formulate, select, expand, commit, dispatch, evaluate,

resolve, finish, and drop. This interface provides no

default implementation for these strategies.

BaseGoal (implements StrategyInterface) and defines

the default strategies for all goals. It also implements the

𝛿𝐺𝑅 transition function that controls which strategies can

be applied; all strategies consult 𝛿𝐺𝑅 to ensure a

transition is allowed. The formulate strategy creates the

appropriate goal node and insert the node in the correct

GoalMemory. The default behavior for most strategies is

to transition to the next mode if the strategy is called.

However, the expand and finish strategies perform

additional steps. The expand strategy for a goal may

require interaction with a process that provides the

expansions (e.g., it may require a planner). So it has a

hook that allows subclasses to specify how expansions

can be generated if needed. If no expansion process is

provided for a goal subclass, the default behavior is to

allow expand to continue. The default finish strategy

confirms that all subgoals are finished before allowing a

parent to transition to finished.

When the Mission Manager first loads, it places goals in

each memory and adds a goal to load the domain.

MaintainGoalMemory (extends BaseGoal) is the goal

that ensures goals continue to get processed in each

GoalMemory. This goal contains a queue of modified

goals and notifies the MissionManager of changes.

When a goal is modified, the MaintainGoalMemory goal

tries to apply the next applicable strategy.

AchieveDomainLoaded (extends BaseGoal) is a goal

that fills the root goal in the DomainGoalMemory. It

currently places the root goal in the

DomainGoalMemory and finishes. However, if there

were database calls or files to read for the domain to

load, the expand strategy would be the correct strategy

to implement this functionality.

Non-primitive domain goals are expanded by instantiating

a sub-goal tree for the goal. The SDP commits to and

dispatches the only expansion available for these goals,

since this is a small example. These non-primitive goals

remain in a dispatched (i.e., in-progress) state until their

subgoals finish. The remaining goals are domain specific

and relate to Figure 11.

OperationalGoal (extends BaseGoal) is base type for

non-primitive goals that match to the operational

priorities of FDR operations. Strategies for these goals

are the same as the BaseGoal.

Operational subgoals eventually decompose into

AchieveTeamMission goals.

AchieveTeamMission (extends BaseGoal) modifies two

strategies from the default given by BaseGoal. The

expand strategy connects a special trajectory generator

to create expansions. The trajectory generator examines

many factors to create a suitable trajectory. However, the

details of this are not known to the goal. The trajectory

generator implements an interface that returns an

expansion that is attached to the goal node after calling

expand. The commit strategy requires Operator

approval before it can send vehicles on a trajectory. So

this strategy confirms that approval has been granted.

 Expanding an AchieveTeamMission goal results in a

specific VehicleMission goal, which includes details

regarding a proposed allocation of a vehicle to a specific

trajectory (cf. the lawnmower flight paths of Figures 1 and

9). Once the VehicleMission details are approved – either

automatically or by the Operator – the Mission Manager

commits and dispatches the proposed expansion of the

VehicleMission for execution.

VehicleMission (extends BaseGoal) is a goal that allows

the Mission Manager to track the progress toward

completion of a mission. It modifies only one strategy

from the default behavior. The dispatch strategy sets up

a special listener for vehicle state that triggers the goal to

move to call the evaluate strategy when a vehicle update

is received. Because the default behavior of every

strategy is to attempt to move to the next mode, the

evaluate strategy will move to finished when the

progress of a vehicle is above a specific threshold that

indicates the task is complete.

The Coordination Manager and Team Executive then begin

sending vehicle commands. The VehicleMission goal

remains dispatched until new information (e.g., a progress

update) causes it to become finished or need some other

resolve strategy.

 The Mission Manager has triggers to monitor the

dispatched goals so that it will notice if the goal is stalled

or completed by the executive. The Mission Manager uses

a repair strategy on the original vehicle allocation to retask

a vehicle for a stalled VehicleMission,

8. Demonstration

We demonstrate the SDP on the Integration Scenario (see

§6.1). Figure 9 shows an airport region (upper left) and, 3-

5 km away from the airport, a VIP region (lower middle)

that is centered on a particular building near the suspected

location of the VIP. The VIP emits a radio signal (e.g., cell

phone signal). Two fixed-wing air vehicles (in yellow) are

tasked with assessing the two regions and finding the VIP.

They carry Electro Optical and Radio Frequency sensors

that activate when the target is within their sensor radius.

 The integration scenario demonstrates the SDP’s key

capabilities, namely that: (1) the SDP can create new goals

responding to an open world (e.g., it collectively responds

to the VIP being found); (2) a vehicle can make decisions

autonomously (e.g., a vehicle may begin relaying the VIP

once found); (3) the SDP responds to vehicles making

Figure 11: Goal decomposition during an SDP run

autonomous decisions (e.g., it notes the vehicle relaying

instead of surveying when the VIP is found); and (4) the

SDP can retask a vehicle to complete a mission (e.g., it

retasks stalled missions to idle vehicles).

 To generate 30 scenarios based on Figure 1 we select 30

random airports from OpenStreetMaps data for North

Carolina (Geofabrik 2014) and then select buildings within

3-5 kilometers of the airport. Buffer regions of 300 meters

around the airport and the building serve as the airport and

VIP regions, respectively. Each run completes when (1)

both regions are completely surveyed and the VIP is found

or (2) the simulation reaches 35,000 steps. Each step is

approximately one second of real time simulation. We use

the MASON simulator (Luke et al. 2005) to run the

scenario.

 At the start of the scenario, one vehicle is assigned to

assess the Aiport Region, denoted by AirportVehicle, and

the other vehicle is assigned to the VIP Region, denoted

VIP Vehicle. Vehicles return to the base when their fuel is

sufficiently low. Vehicle behavior depends on whether the

vehicles can retask themselves to relay when the VIP is

found (denoted +Relay) or they do not relay (–Relay).

Regardless of whether a vehicle begins relaying, the

Mission Manager should always create a new “Relay VIP”

goal when the VIP is found. The Mission Manager

behavior depends on whether it is allowed to retask a

vehicle (+Retask) or not (–Retask).

Condition 1: Find VIP (–Relay –Retask) provides a

baseline. In it the vehicles detect the VIP and a new goal to

relay the VIP appears when the VIP is found. Getting the

SDP to do something meaningful with the “Relay VIP”

goal is our next condition.

 Condition 2: Relay VIP (+Relay –Retask)

demonstrates that a vehicle can retask itself with a new

goal by automatically relaying the VIP once found. The

retasking is embedded in the Vehicle Controller (see

Figure 5, line 15). However, this change of behaviors

needs to be shown in the goal network, where the goal

“Mission: RelayVIP” should appear after the VIP is found.

However, nothing is done with the new goal and VIP

Vehicle does not complete the entire survey of the VIP

region because it switches its own task to relaying.

 Condition 3: Relay and Retask (+Relay +Retask). To

address the problem of the VIP region remaining

unfinished, the Coordination Layer is allowed to retask the

Airport Vehicle so it finishes the VIP Region survey after

completing its area first.

 When we run the simulation on the three conditions, we

observe exactly the expected results. In every case, a new

goal is observed in the Mission Manager after the VIP is

found. In the Relay VIP condition, the VIP Vehicle begins

relaying as expected, leaving the VIP Region unfinshed.

When the Mission Manager is allowed to retask vehicles,

we observe that all three missions complete.

 This demonstration exercises most Goal Lifecycle

strategies (i.e., all except adjust and re-expand). It should

be clear that the nominal strategies (cf. Figure 4, solid arcs)

are executed. However, it may be less clear that the

demonstration also applies most of the resolve strategies

(Figure 4, dashed lines). During the notable events of the

scenario, the evaluate step notifies the Mission Manager of

the need to deliberate. When a vehicle returns to base to

recharge, the Mission Manager applies continue because

recharging is an expected contingency behavior of

surveying. When relaying is enabled (+Relay) and a

vehicle switches to relaying, the Mission Manager must

apply formulate(𝒈′) where 𝑔′ is the RelayVIP goal. Then

it applies defer(Survey) in preference to the RelayVIP

goal. This leaves the Survey goal in a selected (i.e.,

unfinished) mode. With retasking enabled (+Retask), the

Mission Manager applies repair(Survey) to reassign the

goal to the AirportVehicle. Running the ablated versions

(i.e., –Relay or –Retask) is the same thing as limiting the

strategies available to the Mission Manager.

9. Summary and Future Work

We detailed our implementation of a prototype system,

called the Situated Decision Process (SDP), which uses a

Goal Refinement library we have constructed to coordinate

teams of vehicles running LTL-synthesized FSAs in their

vehicle controllers. The central contributions of this paper

are clarifying the relationship of GR with Nau’s (2007)

model of online planning, more clearly defining the Goal

Reasoning Problem and Goal Refinement, outlining a set

of use cases for Foreign Disaster Relief (FDR), detailing

the implementation of Goal Refinement for FDR in our

prototype system and demonstrating that the SDP can

respond to notable events during execution.

 Future work will consist of further automating portions

of the SDP, extending the demonstration to work with

large teams of robotic vehicles, and enriching the domain

model. For example, we plan to extend the domain model

to fully encode temporal and resource concerns similar to

the TREX system (Rajan, Py, and Barriero 2013). We plan

to test the SDP against the more challenging scenarios with

richer sensor models and higher-fidelity simulations.

Ultimately, we plan to run the SDP on actual vehicles and

perform user studies on its effectiveness in helping an

Operator coordinate a team of vehicles in Disaster Relief.

Acknowledgements

Thanks to OSD ASD (R&E) for sponsoring this research.

The views and opinions in this paper are those of the

authors and should not be interpreted as representing the

views or policies, expressed or implied, of NRL or OSD.

We also thank the reviewers for their helpful comments.

References

Anderson, J. R., & Douglass, S. (2001). Tower of Hanoi:
Evidence for the cost of goal retrieval. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 27, 1331–1346.

Altmann, E. M., & Trafton, J. G. (1999, August). Memory for
goals: An architectural perspective. In Proc. of the 21st annual
meeting of the Cognitive Science Society (Vol. 19, p. 24).

Apker, T., Liu, S.-Y., Sofge, D., and Hedrick, J.K. (2014).
Application of grazing-inspired guidance laws to autonomous
information gathering. Proc. of the Int’l Conference on Intelligent
Robots and Systems (pp. 3828-3833). Chicago, IL: IEEE Press.

Balch, T., Dellaert, F., Feldman, A., Guillory, A., Isbell, C.L.,
Khan, Z., Pratt, S.C., Stein, A.N., & Wilde, H. (2006). How
multirobot systems research will accelerate our understanding of
social animal behavior. Proc. of the IEEE, 94(7), 1445-1463.

Berry, P., Lee, T. J., & Wilkins, D. E. (2003). Interactive
execution monitoring of agent teams. Journal of Artificial
Intelligence Research, 18, 217–261.

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saʼar, Y.
(2012). Synthesis of Reactive(1) designs. Journal of Computer
and System Sciences, 78(3), 911–938.

Chien S., Knight R., Stechert A., Sherwood R., and Rabideau, G.
(2000) Using Iterative Repair to Improve the Responsiveness of
Planning and Scheduling. Proc. of the Conf. on Auto. Plan. and
Sched.(pp. 300-307). Menlo Park, CA: AAAI.

Choi, D. (2011). Reactive goal management in a cognitive
architecture. Cognitive Systems Research, 12(3), 293-308.

Coddington, A.M., Fox, M., Gough, J., Long., D., & Serina, I.
(2005). MADbot: A motivated and goal directed robot. Proc. of
the 20th Nat’l Conf. on Art. Intel.(pp. 1680-1681). Pittsburgh,
PA: AAAI Press.

Dvorák, F., Bit-Monnot, A., Ingrand, F., & Ghallab, M. (2014). A
Flexible ANML Actor and Planner in Robotics. In Working
Notes, PlanRob Workshop at ICAPS. Portsmouth, NH: AAAI.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994) Design
Patterns: Elements of Reusable Object-Oriented Software.
Boston: Addison-Wesley.

Geofabrik. OpenStreetMap Data Extracts. (2014) Accessed from
http://download.geofabrik.de/index.html.

Ghallab, M., Nau, D., & Traverso, P. (2014). The actor’s view of
automated planning and acting: A position paper. Artificial
Intelligence, 208, 1–17.

Geier, T. & Bercher, P. (2011). On the decidability of HTN
Planning with task insertion. In Proc. of the 22nd Int’l Joint Conf.
on AI. (pp. 1955-1961). Barcelona: AAAI.

Harland, J., Morley, D., Thangarajah, J., & Yorke-Smith, N.
(2014). An operational semantics for the goal life-cycle in BDI
agents. Auton. Agents and Multi-Agent Systems, 28(4), 682–719.

Ingrand, F., & Ghallab, M. (2014). Robotics and artificial
intelligence: A perspective on deliberation functions. AI
Communications, 27(1), 63-80.

Kambhampati, S., Knoblock, C.A., & Yang, Q. (1995). Planning
as refinement search: A unified framework for evaluating design
tradeoffs in partial-order planning. Art. Intelligence, 76, 168-238.

Kambhampati, S. & Nau, D. (1994). On the nature of modal truth
criteria in planning. Proc. of the 12th Nat’l Conference on AI (pp.
67-97). Seattle, WA: AAAI Press.

Klenk, M., Molineaux, M., & Aha, D.W. (2013). Goal-driven
autonomy for responding to unexpected events in strategy
simulations. Comp. Intell., 29(2), 187-206.

Kress-Gazit, H., Fainekos, G.E., & Pappas, G.J. (2009). Temporal
logic based reactive mission and motion planning. Transactions
on Robotics, 25(6), 1370-1831.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G.
(2005). Mason: A multiagent simulation environment.
Simulation, 81(7), 517-527.

Marthi, B, Russell, S., & Wolfe, J. (2008). Angelic hierarchical
planning: Optimal and online algorithms. Proc. of the Int’l Conf.
on Auto. Plan. & Sched. (pp. 222-231). Menlo Park, CA: AAAI.

Myers, K.L. (1999). CPEF: A continuous planning and execution
framework. AI Magazine, 20(4), 63-69.

Nau, D. (2007) Current trends in Automated Planning. AI
Magazine, 28(4), 43-58.

Navy, U.S. Department of. (1996) Humanitarian
assistance/disaster relief operations planning, (TACMEMO 3-
07.6-05). Washington, D.C.: Gov’t Printing Office.

Pollack, M.E., & Horty, J. (1999). There’s more to life than
making plans: Plan management in dynamic, multiagent
environments. AI Magazine, 20, 71-83.

Rajan, K., Py, F., & Barreiro, J. (2012). Towards deliberative
control in marine robotics. In Marine Robot Autonomy (pp. 91–
175). New York, NY: Springer.

Roberts, M., Vattam, S., Alford, R., Auslander, B., Karneeb, J.,
Molineaux, M., Apker, T., Wilson, M., McMahon, J., & Aha,
D.W. (2014). Iterative goal refinement for robotics. In Working
Notes of the Planning and Robotics Workshop at ICAPS.
Portsmouth, NH: AAAI.

Roberts, M., Apker, T., Johnson, B., Auslander, B., Wellman, B.
& Aha, D.W. (2015). Coordinating Robots for Disaster Relief.
Proc. of the Conf. of the Florida AI Research Society (to appear)
Hollywood, FL: AAAI.

Shivashankar, V., Alford, R., Kuter, U., & Nau, D. (2013). The
GoDeL planning system: A more perfect union of domain-
independent and hierarchical planning. Proc. of the 23rd Int’l
Joint Conference on AI (pp. 2380-2386). Beijing, China: AAAI.

Smith, D., Frank, J., & Jonsson, A. (2000). Bridging the gap
between planning and scheduling. Know. Eng. Rev., 15, 61-94.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N.
(2011). Operational behaviour for executing, suspending, and
aborting goals in BDI agent systems. In Declarative Agent Lang.
and Technologies VIII (pp. 1–21). Toronto, Canada: Springer.

Vattam, S., Klenk, M., Molineaux, M., & Aha, D. W. (2013).
Breadth of approaches to goal reasoning: A research survey. In
D.W. Aha, M.T. Cox, & H. Muñoz-Avila (Eds.) Goal Reasoning:
Papers from the ACS Workshop (Tech. Report CS-TR-5029).
College Park, MD: Univ. of Maryland, Dept. of Comp. Science.

Winikoff, M., Dastani, M., & van Riemsdijk, M. B. (2010). A
unified interaction-aware goal framework. In Proc. of ECAI (pp.
1033–1034). Lisbon, Portugal: IOS Press.

Yoon, S.W., Fern, A., & Givan, R. (2007). FF-Replan: A baseline
for probabilistic planning. Proc. of the 17th Int’l Conf. on Auto.
Plan. and Sched. (pp. 352-359). Providence, RI: AAAI Press.

Young, J., & Hawes, N. (2012). Evolutionary learning of goal
priorities in a real-time strategy game. In Proc. of the 8th AAAI
Conf. on Artificial Intelligence and Interactive Digital
Entertainment. Stanford, CA: AAAI Press.

http://download.geofabrik.de/index.html

